Diagonal-norm upwind SBP operators
نویسنده
چکیده
I will present some new results concerning explicit high-order finite difference methods applied to hyperbolic systems. In particular I will present some new results that support the addition of appropriate artificial dissipation, even for linear problems. Recently, high-order accurate first derivative finite difference operators are were derived that naturally introduce artificial dissipation. The boundary closures are based on the diagonal-norm summation-byparts (SBP) framework and the boundary conditions are imposed using a penalty (SAT) technique, to guarantee linear stability for a large class of initial boundary value problems. These novel first derivative SBP operators have a non-central difference stencil in the interior, and come in pairs (for each order of accuracy). The accuracy and stability properties are demonstrated for linear firstand second-order hyperbolic problems in 1D, and for the compressible Euler equations in 2D. The newly derived first derivative SBP operators lead to significantly more robust and accurate numerical approximations, compared with the exclusive usage of (previously derived central) non-dissipative first derivative SBP operators. ∗Department of Information Technology, Uppsala University, P O Box 337, S-751 05 Uppsala, Sweden. telephone: +46-18-4717631, telefax: +46-18-523049, E–mail: [email protected]
منابع مشابه
Optimal diagonal-norm SBP operators
Optimal boundary closures are derived for first derivative, finite difference operators of order 2, 4, 6 and 8. The closures are based on a diagonal-norm summation-by-parts (SBP) framework, thereby guaranteeing linear stability on piecewise curvilinear multi-block grids and entropy stability for nonlinear equations that support a convex extension. The new closures are developed by enriching con...
متن کاملNew Diagonal-Norm Summation-by-Parts Operators for the First Derivative with Increased Order of Accuracy
In combination with simultaneous approximation terms, summation-by-parts (SBP) operators provide a flexible and efficient methodology that leads to consistent, conservative, and provably stable high-order discretizations. Traditional diagonal-norm SBP operators with a repeating interior point operator lead to solutions that have a global order of accuracy lower than the order of the interior po...
متن کاملOn the Order of Accuracy of Finite Difference Operators on Diagonal Norm Based Summation-by-parts Form
In this paper we generalise results regarding the order of accuracy of finite difference operators on Summation-By-Parts (SBP) form, previously known to hold on uniform grids, to grids with arbitrary point distributions near domain boundaries. We give a definite proof that the order of accuracy in the interior of a diagonal norm based SBP operator must be at least twice that of the boundary ste...
متن کاملMultidimensional Summation-by-Parts Operators: General Theory and Application to Simplex Elements
Summation-by-parts (SBP) finite-difference discretizations share many attractive properties with Galerkin finite-element methods (FEMs), including time stability and superconvergent functionals; however, unlike FEMs, SBP operators are not completely determined by a basis, so the potential exists to tailor SBP operators to meet different objectives. To date, application of highorder SBP discreti...
متن کاملSummation-by-parts operators and high-order quadrature
Summation-by-parts (SBP) operators are finite-difference operators that mimic integration by parts. The SBP operator definition includes a weight matrix that is used formally for discrete integration; however, the accuracy of the weight matrix as a quadrature rule is not explicitly part of the SBP definition. We show that SBP weight matrices are related to trapezoid rules with end corrections w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 335 شماره
صفحات -
تاریخ انتشار 2017